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Drained / undrained

• Drained analysis appropriate when
• Permeability is high
• Rate of loading is low
• Short term behaviour is not of interest for problem 

considered

• Undrained analysis appropriate when
• Permeability is low and rate of loading is high
• Short term behaviour has to be assessed

Drained / undrained

Suggestion by Vermeer & Meier (1998) for deep excavations:
T < 0.10   (U < 10%) use undrained conditions
T > 0.40   (U > 70%) use drained conditions
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k = Permeability
Eoed = Oedometer modulus
γw = Unit weight of water
D = Drainage length
t = Construction time
T = Dimensionless time factor
U = Degree of consolidation
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Undrained behaviour

Implications of undrained soil behaviour:

• Excess pore pressures are generated
• No volume change 

In fact small volumetric strains develop because a 
finite (but high) bulk modulus of water is introduced 
in the finite element formulation

• Predicted undrained shear strength depends on soil 
model used 

• Assumption of dilatancy angle has serious effects on 
results

Undrained behaviour

Results from undrained triaxial tests using the Mohr-Coulomb and Hardening Soil Model
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Triaxial test (NC) – drained / undrained
Typical results from drained (left) and undrained (right) triaxial tests on normally consolidated soils
(from Atkinson & Bransby, 1978)

Triaxial test (OC) – drained / undrained
Typical results from drained (left) and undrained (right) triaxial tests on overconsolidated soils
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Undrained triaxial test– NC / OC
Typical results from undrained triaxial tests on (a) normally consolidated and (b) overconsolidated clay 
(from Ortigao, 1995)
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- Fully saturated soil
- No inflow / outflow of pore water
- Bulk modulus of soil grains is considered to be very high
- Isotropic linear elastic material behaviour (Hooke´s law)
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Skempton’s parameters A and B
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Assuming triaxial compression:
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Skempton’s parameters A and B

Skempton’s parameters A and B

• Notes on parameters A and B:

• For Kw large compared to K´, parameter B ~ 1.0
(corresponds to ∆pw = ∆p > ∆p´ = 0)

• Small amount of drapped air reduces parameter B 
significantly  (see next figure)

• Parameter A depends on stress path, even for elastic 
material behaviour

• Parameter A cannot be determined a priori for complex 
elastic-plastic constitutive models but is a result of the 
model behaviour for the stress path followed   
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Skempton’s parameters A and B

Dependence of pore pressure parameter B on degree of saturation

Undrained behaviour with PLAXIS
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PLAXIS automatically adds stiffness of water when undrained material 
type is chosen using the following approximation:
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Notes: 
• This procedure gives reasonable B-values only for ν´ < 0.35 !
• Real value of Kw/n ~ 1.106 kPa  (for n = 0.5)
• In Version 8  B-value can be entered explicitely for undrained materials



8

Undrained behaviour with PLAXIS

Example 1:

E´ = 3 000 kPa, ν´ = 0.3, νu = 0.495
→ K´ = 2 500 kPa, Ktotal = 115 000 kPa → Kw/n = 112 500 kPa

wK
nKB '1

1

+
=with = 0.978 > reasonable value for saturated soil

Example 2:

E´ = 3 000 kPa, ν´ = 0.45, νu = 0.495
→ K´ = 10 000 kPa, Ktotal = 103 103 kPa → Kw/n = 93 103 kPa

B = 0.903 > poor value for saturated soil

Undrained behaviour with PLAXIS

Method A (analysis in terms of effective stresses):
type of material behaviour: undrained
effective strength parameters c´, ϕ´, ψ´
effective stiffness parameters E50´, ν´

Method B (analysis in terms of effective stresses):
type of material behaviour: undrained
undrained strength parameters c = cu, ϕ = 0, ψ = 0
effective stiffness parameters E50´, ν´

Method C (analysis in terms of total stresses):
type of material behaviour: drained
total strength parameters c = cu, ϕ = 0, ψ = 0
undrained stiffness parameters Eu, νu = 0.495
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Undrained behaviour with PLAXIS

Notes on different methods:

• Method A: 
• Recommended
• Soil behaviour is always governed by effective stresses
• Increase of shear strength during consolidation included
• Essential for exploiting features of advanced models such as the

Hardening Soil model, the Soft Soil model and the Soft Soil Creep model
• Method B: 

• Only when no information on effective strength parameters is avilable
• Cannot be used with the Soft Soil model and the Soft Soil Creep model

• Method C: 
• NOT recommended
• No information on excess pore pressure distribution (total stress analysis)

Undrained strength from Mohr circle
Consider fully undrained isotropic elastic behaviour 
(Mohr Coulomb in elastic range) 

∆pw = ∆p   >   ∆p´ = 0

→ centre of Mohr Circle remains at the same point

Mohr Circle for evaluating undrained shear strength (plane strain)
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Influence of constitutive model
Parameter sets for Hardening Soil model 

Model Number E50
ref Eur

ref Eoed
ref  c ur pref m K0

nc Rf 

 kN/m2 kN/m2 kN/m2 ° ° kN/m2 - kN/m2 - - - 

HS_1 30 000 90 000 30 000 35 0 / 10 0.0 0.2 100 0.75 0.426 0.9 

HS_2 50 000 150 000 50 000 35 0 0.0 0.2 100 0.75 0.426 0.9 

HS_3 15 000 45 000 15 000 35 0 0.0 0.2 100 0.75 0.426 0.9 

HS_4 30 000 90 000 40 000 35 0 0.0 0.2 100 0.75 0.426 0.9 

HS_5 30 000 90 000 15 000 35 0 0.0 0.2 100 0.75 0.426 0.9 

HS_6 50 000 150 000 30 000 35 0 0.0 0.2 100 0.75 0.426 0.9 

 Parameters for MC Model 

E = 30 000 kN/m2 

 = 0.2 

 = 35° 

 = 0° and 10° see also Schweiger (2002)

Comparison MC-HS (influence ψ)
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Simulation of undrained triaxial compression test – MC / HS model - q vs ε1
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Comparison MC-HS (influence ψ)
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Simulation of undrained triaxial compression test – MC / HS model - q vs p´

Comparison MC-HS (influence ψ)
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Simulation of undrained triaxial compression test – MC / HS model - ∆pw vs ε1
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Comparison MC-HS (influence ψ)
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Simulation of undrained triaxial compression test – MC / HS model - A vs ε1

Parameter variation – Hardening Soil
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Simulation of undrained triaxial compression test – HS model - q vs p´
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Parameter variation – Hardening Soil
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Simulation of undrained triaxial compression test – HS model - q vs ε1

Parameter variation – Hardening Soil
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Parameter variation – Hardening Soil
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Simulation of undrained triaxial compression test – HS model - A vs ε1

Summary

• Undrained analysis should be performed in effective
stresses and with effective stiffness and strength parameters

• Undrained shear strength is result of the constitutive model 

• Care must be taken with choice of value for dilatancy angle

• Note that for NC-soils in general:
• Factor of safety against failure is lower for short term

(undrained) conditions for loading problems (e.g. embankment)
• Factor of safety against failure is lower for long term (drained) 

conditions for unloading problems (e.g. excavations) 
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Real Excavation Case in Stiff Residual 
Soils-What is likely Field Conditions?

H = 15 m Cv=66 m2/day

Cv=125 m2/day

Cv=53 m2/day

2

*
H

tcT v=

What is West Coast Station Situation ???
Consolidation Considerations in Excavation

Parameters for West Coast Station
• Cv= 50 m2/day
• H=15 m
• t = 100 days
• T=50*100/(15*15) = 22.2 >>> 0.4
• Situation on Passive Side is likely to be DRAINED 

Condition
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Excess PP at Formation Level for k=1e-7 and 1e-8 m/s

Cases of k=1e-7 to 1e-9 m/s
Displacements at Formation Level
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Cases of k=1e-7 to 1e-9 m/s
BMs at Formation Level

Wall Deflection at B (15/83.85 – 1.65m above FL)
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Heave at C(0/78.7 – 3.5m below FL)
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